

. 4

GPU Nuclear Corporation Post Office Box 480 Route 441 South Middletown, Pennsylvania 17057-0191 717 944-7621 TELEX 84-2386 Writer's Direct Dial Number:

(717) 948-8461

4410-86~L-0157 Document ID 0088P

September 5, 1986

TMI-2 Cleanup Project Directorate
Attn: Dr. W. D. Travers
Director
US Nuclear Regulatory Commission
c/o Three Mile Island Nuclear Station
Middletown, PA 17057

Dear Dr. Travers:

Three Mile Island Nuclear Station, Unit 2 (TMI-2) Operating License No. DPR-73 Docket No. 50-320 Reactor Building Sump Criticality Safety Evaluation Report

In response to a request by your staff, forwarded herein is TMI-2 Technical Bulletin 86-36, "Characterization of Sediment on Reactor Building Basement Floor." This Technical Bulletin supports the conclusions of the Reactor Building Sump Criticality Safety Evaluation Report.

Sincerely,

F. R. Standerfer / Vice President/Director, TMI-2

FRS/CJD/eml

Attachment

GPU Nuclear Corporation is a subsidiary of the General Public Utilities Corporation

8	3/21/86	
1	OF	2
	1	0F

SUBJECT: CHARACTERIZATION OF SEDIMENT ON REACTOR BUILDING BASEMENT FLOOR **REFERENCES:**

- GEND-042. October 1984. TMI-2 Reactor Building Source Term Measurements. 1.
- GPUNC Memorandum and attached Agenda of November 20, 1985 from G. Cremeans to 2. Meeting Attendees. "Sludge Removal Program Open Issues." 4341-85-068.
- GPUNC Memorandum of July 11, 1986 from P. Bengel to G. Eidam. 3. "Standardization of Reactor Building Basement Sediment Volume Estimate." 4320-86-0445.
- GPUNC Calculation No. 4320-4340-86-036. June 20, 1986. "Sludge Mass on 4. Reactor Building Basement Floor."
- GPUNC Memorandum of December 5, 1986 from K. Hofstetter to G. Eidam. 5. "Analyses of Reactor Building Sludge Samples." 4240-85-0427.
- Technical Bulletin. January 14, 1986. "Robotic Sediment Sampling." TB-85-35, 6. Rev. 1
- 7. Technical Bulletin, May 13, 1985. "Reactor Building Basement Fuel Estimate." TB-85-08, Rev. 1

SUMMARY:

Several estimates of the mass of sediment on the reactor building basement floor were combined and averaged to provide a single value that is considered to be the most accurate currently available. In addition, the wet sediment density, fuel content, and curie values for Cs-137 and Sr-90 have been derived (directly or extrapolated) from existing data (Reference 1).

Average Sediment Total Mass from Recent Samples Wet Sediment Density Total Fuel Content in Sediment Cs-137 Sr-90

1.5 x 10⁷ gm 1.03 gm/ml 1.7-3.2 kg as UO2 1540-2540 C1 654-687 C1

PREPARED	BY:	H. P. Wood	- 8/21/86 8720
APPROVED	BY: (G. R_Eidam	8653.
APPROVED	BY:	R. H. Fillnow	8/21/86

TECHNICAL BULLETING ARE ISSNED BY THE PROJECT PLANNING ARE ARALYSIS REPORTMENT TO OUTCRLY CORRESICNTE TECHNICAL INFORMATION, THE INFORMATION IS CONTROLLED AND VILL OF OPPATED ABB/OR INCORPORATED INTO FORMAL NOCHNENTS AS APPROPRIATE.

			18 8	6-36	_REV	. 0
1			DATE 8/21/86			
	TMI-2	TECHNICAL BULLETIN	PAGE	2	OF	2

DISCUSSION:

Three build inter vehic to be were The m	e recent calculati ding basement floo rpretations of vid cle surveys of acc e concentrated in more uniformly de mass projections,	ons have been ma r. The calculat eo tapes taken o essible basement the impingement posited as deter as noted below,	de of the mass of sediment on the reactor ions were based upon reasoned assumptions and luring remotely controlled reconnaissance areas. The bulk of the sediment was found area; fuel and associated fission products mined by sampling and area gamma surveys. lie within a narrow range.
Sit	te Engineering -	1.47 x 10 ⁷ gm	(corrected to a density of 1.03 gm/ml,
Dec	con. Planning -	1.58 x 10 ⁷ gm	(derived from a reported volume of 540 ft ³ at a density of 1.03 gm/m], Reference 3)
Dat	ta Management -	<u>1.43 x 10</u> 7 gm	(note calculations, Reference 4)
	Average Value	1.5 × 10 ⁷	
video	equipment. it wa	is necessary to 1	nfor appropriate volumes and analytical
info const is of PLICATIO The s is re some	rmation. The resu idered the best av otained. <u>DNS & USE</u> : sediment character ecommended for use basic uncertainti	its obtained are ailable. This b ization noted is in planning. I es in source inf	based on the most credible data at hand and t should be used carefully in recognition of formation.
info const is of PLICATIO The s is re some	rmation. The resu idered the best av btained. DNS & USE: sediment character ecommended for use basic uncertainti	its obtained are vailable. This b vization noted is in planning. I es in source inf	based on the most credible data at hand and t should be used carefully in recognition of formation.
info const is of PLICATIO The s is re some TACHMEN Table	rmation. The resu idered the best av btained. <u>DNS & USE</u> : sediment character ecommended for use basic uncertainti <u>TS</u> :	its obtained are vailable. This b ization noted is in planning. I es in source inf	based on the most credible data at hand and t should be used carefully in recognition of formation.
info const is of PLICATIO The s is re some TACHMEN Table 1. (rmation. The resu idered the best av otained. <u>ONS & USE</u> : sediment character ecommended for use basic uncertainti <u>TS</u> : <u>e</u> Characterization o	its obtained are vailable. This b ization noted is in planning. I es in source inf	and uniformly firm and factual, but can be bulletin will be updated as more information a based on the most credible data at hand and t should be used carefully in recognition of formation.
info const is of PLICATIO The s is re some TACHMEN Table 1. (Figur	rmation. The resu idered the best av otained. <u>ONS & USE</u> : sediment character ecommended for use basic uncertainti <u>TS</u> : <u>e</u> Cuaracterization o <u>re</u>	its obtained are vailable. This b vization noted is in planning. I es in source inf	a not uniformly firm and factual, but can be bulletin will be updated as more information a based on the most credible data at hand and it should be used carefully in recognition of formation.
infor const is of PLICATIO The s is re some TACHMENT Table 1. (Figur 1. (rmation. The resu idered the best av otained. <u>ONS & USE</u> : sediment character ecommended for use basic uncertainti <u>TS</u> : <u>e</u> Cuaracterization o <u>re</u> Reactor Building B	its obtained are vailable. This b vization noted is in planning. I es in source inf of Reactor Buildi Basement Zones/Ar	ing Floor Sediment
info const is of PLICATIO The s is re some TACHMENT Table 1. (Figur 1. (rmation. The resu idered the best av otained. <u>ONS & USE</u> : sediment character ecommended for use basic uncertainti <u>TS:</u> <u>e</u> Characterization o <u>re</u> Reactor Building B	its obtained are vailable. This b ization noted is in planning. I es in source inf of Reactor Buildi Basement Zones/Ar	a not uniformly firm and factual, but can be bulletin will be updated as more information a based on the most credible data at hand and it should be used carefully in recognition of formation.
info const is of PLICATIO The s is re some TACHMEN Table 1. (Figur 1. (rmation. The resu idered the best av otained. <u>DNS & USE</u> : sediment character ecommended for use basic uncertainti <u>TS</u> : <u>e</u> Characterization o <u>re</u> Reactor Building B	its obtained are vailable. This b vization noted is in planning. I es in source inf of Reactor Buildi Basement Zones/Ar	iner appropriate volumes and analytical enot uniformly firm and factual, but can be pulletin will be updated as more information based on the most credible data at hand and t should be used carefully in recognition of formation. Ing Floor Sediment reas Doc. Id. 0336V

TO OVICELY CONTRUICATE TECHTICAL INFORMATION, THE INFORMATION IS CONTRULLED AND WILL DE OPANTED ABB/OR INCORPORATED INTO FORMAL DOCUMENTS AS APPROPRIATE.

TABLE 1

TB-86-36

CHARACTERIZATION OF REACTOR BUILDING BASEMENT FLOOR SEDIMENT

BASEMENT LOCALE	SEDIMENT MASS (gm)	FUEL		Cs-137		Sr-90		
		ANALYSIS	CONTENT (Kg)	ANALYSIS (µCi/gm)	CONTENT (µCi)	ANALYSIS (µCi/gm)	CONTENT (µCi)	
Impingement Area	6.7 x 10 ⁶ (1)	16-140 gm in gen'l. imping. area (5)	0.2-1.4 x 10 ⁻¹	15 - 30 (5)	10-20 × 10 ⁸	7 - 12 (6)	4.7-8.0 × 10 ⁷	
D-rings	1.3 × 10 ⁵ (2)	2.0 mg/gm (3) Covered Hatch Area	2.6×10^{-1}	1.1 x 10 ³ (3)	1.4 x 10 ⁸	1.7 x 10 ³ (3)	22 × 10 ⁷	
RCOT Dischg. Area	0.2 × 10 ⁵ (2)	1.8-2.4 gm/ft ² from T8-85-8 (0)	0.9 - 1.2	1.0 x 10 ³ (2) Open Stairwell	1.9 ± 10 ⁷	3.5 x 10 ³ (3) Open Stairwell	6.6 × 10 ⁷	
Sump	6.4 x 10 ⁵ (2)	0.2 mg/gm (3)	1.2 x 10 ⁻¹	54 (2)	3.2 × 10 ⁷	150 (2)	9.0 × 10 ⁷	
Incore Area	0.2 × 10 ⁵ (4)	From 18-85-8 (1)	0 - 1.1	1.1×10^3 (3)	2.1 ± 10 ⁷	1.7 x 10 ³ (3)	3.2 × 10 ⁷	
Enclosed Stairwell Area	0.7 × 10 ⁵ (2)	2.2 mg/gm (2) Covered Hatch Area	1.6 x 10 ⁻¹	3.6 x 10 ³ (2) Covered Hatch Area	2.6 × 10 ⁸	1.2 x 10 ³ (2) Covered Hatch Area	8.7 × 10 ⁷	
Leak Cooler Area	0.2 × 10 ⁵ (2)	3.0 mg/gm (2) Penetr. 225	0.6 x 10-1	30 (2) Penetr. 225	5.7 x 10 ⁵	84 (2) Penetr. 225	0.2 × 10 ⁷	
Remaining Area	0.6 x 10 ⁵ (2)	2.0 mg/gm (3)	1.3 x 10 ⁻¹	1.1 x 10 ³ (3)	7.0 x 10 ⁷	1.7 × 10 ³ (3)	11.0 × 10 ⁷	
Totals	1.5		1.7 - 3.2 Kg		1540-2540 Ci		654 - 687 Ci	

Mass calculations based on sediment sampling in Nov., 1985 and RRV video surveys made during 3rd Q., 1984.
 Mass estimates and analyses taken from data presented in GEND-042, Table 6. Reference 1.
 Analyses from GEND-042, Table 6. averaged for use in preparation of above table. Reference 1.
 Sludge Removal Program, 4341-85-068, 11/20/85, with table attached, Reference 2.
 Data from TB-85-35, Table 1, Reference 6.
 Horstetter Memo, page 2, item 5, Reference 5.

15178 PP

